

MicroBooNE DAQ

Eric Church, FNAL/PNNL DAQ/Online Computing 23-Feb-2015

Outline

- MicroBooNE DAQ System Overview
- System Components
- Data flow

Overview of DAQ Project

- The MicroBooNE DAQ is responsible for reading out, assembling events, writing them to file.
- □ But also:
 - Monitoring and Control: EPICS database
 - Beam data concatenation
 - Online monitoring
 - Run Control
 - Calibration runs, Laser Runs, Regular runs ...
 - Swizzling (DAQ binary to ART ROOT format)
 - DAQ DBs and interaction with Offline dB
 - Data management (PUBS), ...

MicroBooNE Status

- CD3b March, 2012.
- CD4 December, 2014
- Electronics Reception Tests have been run all the while, using much of the full DAQ and its moving parts.
 - Through 2013 and 2014 as the TPC was constructed, sealed up in the cryostat and moved to LArTF
 - Collected PMT data in 2014 when that system was installed into the cryostat

Calibration vertical slice tests

We ran periodic vertical slice tests over the past
2 years to test electronics, pre cryostat, after
cryostat, and after move to LArTF

MicroBooNE DAQ now

- DAQ is installed, connected, running at LArTF (MicroBooNE enclosure)
 - Computers up and running; racks, electronics all connected, platform over cryostat in place.
- The MicroBooNE DAQ team is comprised of the following institutions:
 - Yale, LANL, FNAL, PNNL, Nevis/Columbia, KSU, Otterbein
 - Manchester, Oxford, others pitching in on RunControl ...

MicroBooNE instrumentation

- 8256 wire channels
- □ 32+4 PMTs

data on Wires are the projections in 3 views. Allows reconstructing back to 3D tracks and showers.

PMT data to trigger, to determine t0 for cosmics subtraction, and perhaps late/early light for pID.

The ship goes by almost instantaneously, and you see the flash from the light on its bow; the waves lap up on shore much later.

MicroBooNE TPC/Cryostat pictures

Out at LArTF now

System Overview

Nevis TPC Crates (x9)

Wires are sampled@2MHz, 2 bytes

Nevis warm electronics

PCle

Fibers into SEB-computers

SEB == Sub Event Buffer <==> basically one crate.

There are two data streams.

- (1) Triggered
- (2) Supernova: continuous stream

Both come through the "XMIT" card on duplex fibres.

Three NEVIS custom PCIe cards per SEB.

2 data streams

Beam physics: triggered stream

- confirm/refute/dispute miniBooNE BNB sub-500 MeV excess
- x-sections in Argon
- But also: NuMI events
- Charge calibrations; Laser calibrations
- "Strobe" events

non-Beam physics: Supernova stream

- Every single 1.6 msec frame, one after the other
- Will fill seven 2 TB disks in two days on each crate.
- GPS time of event will allow to dig through and recover 1-2 hrs around the candidate SN, as reported from SNEWS
- non-trivial disk-read, network-heavy task.
 - data moving, reaping always running (PUBS)

DAQ software support

- SCD SSA team Kurt Biery's group, mainly Gennadiy — has been instrumental in writing/ supporting DAQ software along with Wes/me
 - It's a very scalable, C++ solution, with the assembler and the ~10 "sebApp" processes inside a state machine, communicating via sockets. Shared memory segments for online monitoring – Donatella
 - We have key artdaq components fragments, event stores — but broke off our needs from that code repository deliberately so as not to be exposed to forced upgrades.
 - Nova's Run Control system

Slow Monitoring and Control

- we run EPICS on our DAQ DB server
- The 9 Wiener power supplies for the TPC warm electronics crates are under password-protected remote control/monitoring
- Similarly, with the ASICs power and drift and bias voltages
- Rack fans, temperatures are monitored by on-rack single board computers (Glomations) and report to EPICs. Cryo monitoring via IFIX to EPICs.
- Computer temperatures, fan speeds, RAID status also reported to EPICs. Gangia metrics also go to EPICs.
- Impedance between Detector/Building reports rii,
- All summarized for shifter and alarmed/archived.

SlowMonCon pictures

uB DAQ Test Stand

- We have a Test Stand at LArTF, as well, with two crates in computer room.
 - One server reads one crate's worth of FEMs for wires (~960 wires)
 - One server reads at least one FEM card in one crate of PMTs
 - A third server is the test stand event builder.
 - All servers are on a separate private network.
 - These crates do not read actual PMTs or wires in the tight space of the computer room
 - Though, if needed we have a test flange (chimney) we can connect to at DAB
- We test kernel upgrades, if needed, here.
- These serve as our hot-swap machines too

DAQ Servers

Test Stand

Server administration

- The SCD-SLAM team Rennie, Bonnie, Jason, et al. formally maintain all 15 of our production servers
 - It's been a very smooth and professional arrangement
 - We run SLF6.6
 - perhaps no pressing need to take any of these further, though we may go to 6.7 with its networking bug fix.
 - We have satisfactory root access, as well, as needed for modest scope changes
 - There will soon be ACL rules to only allow access in via 2 gateway nodes
 - When our laser control is at the appropriate stage we will hand them admin duties of these two servers, as well. Perhaps our 4 test stand machines too.

Online DAQ systems

ubdaq-prod network

In ROCW...

Ganglia

Run Control (appropriated from NOvA)

Current work

- We are now plugging in our runConfig DB, from which to make our fcl files, and ensure legitimate detector configurations.
- PUBS data flow details being finished
- Need Huffman encoding running working
- Need to add the trigger fragment to the event
- Port to a new uboonedaq_datatypes and code changes to accommodate it.

□ SN mode

Summary

- All the DAQ moving parts are accounted for and in mature development or are complete.
- Good instructions and list of tasks at https://cdcvs.fnal.gov/redmine/projects/uboonedaq/wiki
- Exciting times for MicroBooNE!

Backup Slides

Trigger

Digitizing Boards: MicroBooNE design

DAQ Network/Process Overview

Calibration Hardware

PNNL as second data site

Will do this for Belle II's 200 PetaBytes

Cold CMOS Analog Front End ASIC & Motherboard A\$IC die & package

16 channels per chip

Charge amplifier, high-order filter

Cold motherboard with 12 ASICs chips (2 shown)

ENC (electrons r.m.s.

Adjustable gain: 4.7, 7.8, 14, 25 mV/fC (55, 100, 180, 300 fC)

Adjustable filter time constant (peaking time): 0.5, 1, 2, 3 µs

Selectable dc/ac (100 µs) coupling

136 registers with digital interface

5.5 mW/channel (input MOSFET 3.6 mW)

Designed for long cryo-lifetime

- Circuit performance is almost identical at 300K and 77K, except noise is ~2x lower
- Calibration capacitor on ASIC changes by ~0.5% from 300K to 77K
- Cycle #4* chips: Passed all tests

Amplitude [V] 0.4

Overview: Digitizing Boards: Hardware and Tasks

Continuous Data rate per card: 64 wires x 2 MHz = 128 MHz 12 bit ADC words.

Glomation Single Board Computer GESBC-9G20

- → SBC includes
 - Linux OS
 - Ethernet
 - RS232
 - USB
 - 40 digital I/O
 - 4 ADC
 - I2C and SPI bus

- Interfaces directly with
 - Glassman Drift HV RS232
 - Rack Temperature I2C bus using Maxim DS1624
 - Rack Fanpack digital I/O

Glenn Horton-Smith, KSU